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Abstract: In this paper, a few properties of logarithmic and exponential functions will be reviewed by presenting problems arising 

from real studies. The properties are presented under 3 topics. 

Introduction. 

The logarithmic (ln) and the exponential (exp) functions are two widely used mathematical functions in pharmaceutical studies. The 

ln function is used to transform either the concentration data or PK parameters for various reasons, such as the log-down nature of 

concentration in the final phase or the need to create data with normal distribution for the PK parameters. After performing some 

statistical or mathematical procedures in the ln-scale, the results are then back-transformed to the original scale using the exp 

functions. 

In pharmaceutical studies, these two functions have properties that can result in some interesting and sometimes unexpected 

observations. In this paper, we present three topics. Under each topic, various properties of the aforementioned functions are 

reviewed. The first topic explains how, under special circumstances, the disproportionate scaling property of ln and exp can create 

unusual values for the geometric and arithmetic mean of parameters. The second topic discusses 3 types of means that can be 

derived in pharmaceutical studies. Normally, pharmaceutical studies only present the geometric and arithmetic means. Using 

mathematical tools (and history!), we prove why the geometric mean is not a proper term to refer to the geometric means! We 

argue that a less popular term, i.e., the Geometric Least Square Mean (GLSM), is the right term for this type of mean. In the third 

topic, we present an observation which can be seen in many studies: the standard error of the ln-transformed PK parameters is very 
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close to (sometimes identical with) the coefficient of variation of the original PK parameter. We will use mathematical tools such as 

the Taylor and McLaurin series expansions to prove why we make this observation.  

Topic 1: Unusual values for the geometric and arithmetic means 

Figure 1 shows an unusual feature of arithmetic means for AUCt and AUCinf. 

 
Figure 1- Unusual values for the arithmetic means for AUCt and AUCinf 

The issue is that the arithmetic mean for AUCt is larger than that for AUCinf. This might seem unusual as AUCinf is an extension of 

AUCt meaning that for each individual, AUCinf is calculated by adding a positive value to AUCt. Therefore, AUCinf is always larger 

than AUCt. 

Figure 2 provides the rationale behind this seemingly unexpected observation. 
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Figure 2- Two subjects with missing AUCinf 
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Subjects 09 and 10 have AUCts not only much larger than the average AUCt, but also larger than the average AUCinf. However, since 

lambda could not be evaluated for these subjects (for reasons such as small R-squared value, missing time points in the final phase, 

etc.), AUCinf could not be calculated either. Therefore, they contribute to AUCt, but they add nothing to AUCinf. As a result, they 

shift the weight for arithmetic mean from AUCinf to AUCt. 

Now, taking a closer look at Figure 1, another question arises: Why does the unusual observation for the arithmetic means doesn’t 

apply to the geometric means? As seen in this figure, the geometric means have a natural order, with AUCinf having a larger 

geometric mean than AUCt. This observation might appear at odds with what was noted above for the arithmetic mean because of 

the following property of the logarithmic and exponential function. 

Property 1: 

𝑒𝑥𝑝 and 𝑙𝑛 are strictly increasing functions. 

This means that these two functions preserve orders. Hence, one might expect to observe the same order for the geometric and 

arithmetic means for AUCt and AUCinf. In other words, if the arithmetic mean for AUCt is larger than that of AUCinf, then so should 

be the geometric mean! 

However, one should notice that in addition to property 1, the following property also plays a role in the discussed observation: 

Property 2: 

 𝑒𝑥𝑝 and 𝑙𝑛 do not keep differences proportionally. 

More precisely, although the two functions preserve the orders, the magnitude of difference in the two scales (the original scale and 

the transformed scale) might be dramatically different. To visualize this fact, look at Figure 3. 

mailto:info@biopharmaservices.com


 
 

Canada: 4000 Weston Rd., Toronto, Ontario M9L 3A2 | Tel: +1 (416) 747-8484 | Email: info@biopharmaservices.com 
5 

 

 
Figure 3- Comparing the magnitude of AUCt in the original and log-transformed scales 
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Comparing AUCts for subjects 01, 09 and 10 we see the following order: 09, 10, 01. The exact same order applies to ln(AUCt). 

However, AUCt for subjects 09 or 10 is much larger than AUCt for Subject 01 while a comparison between ln(AUCt) values clearly 

shows that all 3 values are fairly close! 

This property causes subjects 09 and 10 to lose ground after being log-transformed. They cannot offset the difference between 

mean values of ln(AUCt) and ln(AUCinf). As a result, the geometric mean (which is calculated as the back transformation of the LS-

mean of log-transformed data) shows a natural order for AUCt and AUCinf. 

Topic 2: On the geometric mean 

The arithmetic mean and the geometric mean are two widely used types of means in statistics, particularly in pharmaceutical 

statistics. Figure 4 shows an example of such means reported for some BE study. 

 
Figure 4- Arithmetic and geometric means of PK parameters 

Let’s pick AUCt for TRT A as an example: 
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𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 = 16379.83 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 = 15692.49 

Exploring the outputs, we can extract a third kind of mean! Figure 5, shows the reported arithmetic mean for ln(AUCt). 

 
Figure 5- The arithmetic mean for ln(AUCt) 

If we back transform this value using the exponential function, then we get a value which is close to both the arithmetic and 

geometric means but still distinct from them: 

(9.6695) = 15827.43 

Formulas for these three kinds of mean are presented below. 

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛1)𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 =
1

𝑛
∑

𝑛

𝑖=1

𝑎𝑖 

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛2)𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 =𝑒𝑥𝑝 𝑒𝑥𝑝(
1

𝑘
 [
1

𝑛1
∑

𝑛1

𝑖1=1

𝑙𝑛 𝑙𝑛(𝑎𝑖1) +
1

𝑛2
∑

𝑛2

𝑖2=1

𝑙𝑛 𝑙𝑛(𝑎𝑖2) +⋯+
1

𝑛𝑘
∑

𝑛𝑘

𝑖𝑘=1

𝑙𝑛 𝑙𝑛(𝑎𝑖𝑘)]) 
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(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛3)𝑇ℎ𝑒 𝑏𝑎𝑐𝑘 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑑𝑎𝑡𝑎

=𝑒𝑥𝑝 𝑒𝑥𝑝(
1

𝑛
∑

𝑛

𝑖=1

𝑙𝑛 𝑙𝑛(𝑎𝑖)) 

At this point, let’s shift the main theme from statistics to mathematics. The original mathematical formula for the geometric mean is 

shown below: 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 = √𝑎1 × 𝑎2 × …× 𝑎𝑛
𝑛 = (∏

𝑛

𝑖=1

𝑎𝑖)

1
𝑛

 

One might wonder why this formula is called the geometric mean. The notion of geometric mean originates from triangular 

geometry. 

Figure 6 depicts a right triangle,  

 
Figure 6- A right triangle with height h 

Historically, the following relationship has been known for this triangle  

                                                     

ℎ2 = 𝑥𝑦 
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                   ⇒ℎ = √𝑥𝑦 = (𝑥𝑦)
1

2  

This is the formula for the geometric mean for n=2. Although this geometric feature applies only to n=2, the formula is generally 

called the geometric mean for any value of n. It is worth noting that there is a second geometric interpretation for n=2: The 

geometric mean of two numbers is the length of each side of a square, the area of which is the same as the area of a rectangle with 

its length and width being equal to the two given numbers. Also, for n=3 there is a geometric interpretation: The geometric mean of 

3 numbers is the length of each side of a square-cube the volume of which is equal to the volume of a cube with the given 3 

numbers as its width, length, and height. There are no geometric interpretations for values of n larger than 3. 

The formula provided above seems still unfamiliar to what we know as the geometric mean. However, we can use the following 3 

properties of the ln function to convert the formula for geometric mean to something we already know. 

Property 3: 

𝑒𝑥𝑝 𝑒𝑥𝑝(𝑙𝑛 𝑙𝑛(𝑎)) = 𝑎,          for any 𝑎 > 0. 

(𝑒𝑥𝑝 𝑒𝑥𝑝(𝑎)) = 𝑎,          for any value of 𝑎. 

Property 4: 

                    (𝑎𝑏) = 𝑏× 𝑙𝑛(𝑎),     for any 𝑎 > 0 and any value of 𝑏. 

Property 5: 

                  𝑙𝑛 𝑙𝑛(𝑎1 × 𝑎2 ×…× 𝑎𝑛) =𝑙𝑛 𝑙𝑛(𝑎1) +𝑙𝑛 𝑙𝑛(𝑎2) +⋯+𝑙𝑛 𝑙𝑛(𝑎𝑛). 

Now, applying these properties consecutively, we can write 
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√𝑎1 × 𝑎2 ×…× 𝑎𝑛
𝑛 = (∏

𝑛

𝑖=1

𝑎𝑖)

1
𝑛

 

                                                                 =𝑒𝑥𝑝 𝑒𝑥𝑝(𝑙𝑛 𝑙𝑛((∏

𝑛

𝑖=1

𝑎𝑖)

1
𝑛

)) 

                                                           =𝑒𝑥𝑝 𝑒𝑥𝑝(
1

𝑛
 𝑙𝑛 𝑙𝑛(∏

𝑛

𝑖=1

𝑎𝑖

 

)) 

                                                      =𝑒𝑥𝑝 𝑒𝑥𝑝(
1

𝑛
∑

𝑛

𝑖=1

𝑙𝑛 𝑙𝑛(𝑎𝑖)) 

Therefore, we see that, mathematically, the geometric mean is equal to the back-transformation of the arithmetic mean of the ln-

transformed data (equation 3). What we referred to as the geometric mean of data before (equation 2) has nothing to do with the 

recent formula! Actually, it is important to note that what we typically call the geometric mean is not a geometric mean! This is just 

an abuse of terminology! This is why some references refer to (equation 2) as the Geometric Least Square Mean (GLSM). The reason 

is that the formula is derived from the least square mean given by a GLM or Mixed model.  

Still many references use the term Geometric mean to refer to equation 2. The reason is that equation 3 has no practical use in 

statistics. Basically, we transform our data using the ln function because we hope the ln-transformed data would be normally 

distributed. This will allow us to use ANOVA and GLM/Mixed models. Recall that normality of data is the basic requirement of these 

methods. On the other hand, these methods always return the LS mean (the Lease Square mean) as the point estimation for 

average. We arrive at the conclusion that ln-transformation and the GLSM formula (equation 2) come as a package, and we cannot 
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separate them. This means that equation 3 doesn’t provide any insight or valuable information. Hence, its corresponding term (the 

geometric mean) is sometimes taken away and assigned to equation 2! 

Topic 3: An immediate estimation for the Coefficient of Variation 

Reviewing the results of studies analyzed using a GLM model, one can identify the fact that typically the RMSE reported by the 

ANOVA for the ln-transformed data and the CV for the original PK parameters are very close and sometimes identical. 

Figures 7-9 display this fact for 3 parameters, AUCt, AUCinf and Cmax, from the same study. If we round off RMSE to 4 decimal 

places and then multiply it by 100 (to change the unit to %), then we get values which are identical to CV for AUCt and AUCinf, and 

close to CV for Cmax. 
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Figure 7- RMSE (ln(AUCt)) and CV(AUCt) are identical 

 

Figure 8- RMSE (ln(AUCinf)) and CV(AUCinf) are identical 
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Figure 9- RMSE (ln(Cmax)) and CV(Cmax) are very close 
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Below, the mathematical justification for this observation is provided. The approach is based on a well-known mathematical tool 
called series expansion and polynomials. 

Let f be a function that meets a couple of mathematical requirements. Without getting into those mathematical details, keep in 

mind that both the logarithmic and exponential functions meet the requirements. The Taylor series expansion is defined as follows: 

 

𝑓(𝑥) = ∑

∞

𝑛=0

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

= 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2
(𝑥 − 𝑎)2 + 

𝑓(3)(𝑎)

6
(𝑥 − 𝑎)3 +⋯ 

In this formula, a is a fixed point, which we will refer to as the center of expansion. x is any arbitrary point in the range of f. 𝑓(𝑛)(𝑎) 

denotes the n-th derivation of f at a. The formula above says, instead of calculating f(x) directly, we can use the formula on the right-

hand side. The latter could be simpler to apply, as it is a series of polynomials.  

One issue regarding this formula is that it provides an infinite series, which is impractical. Therefore, the notion of the K-th order 

Taylor polynomial has been introduced as shown below. 

𝑓(𝑥) ≈ ∑

𝑘

𝑛=0

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

In this formula k represents any arbitrary integer (i.e. k=1, 2, …). Since we are throwing away parts of the original Taylor series, we 

do not get a 100% accurate equality, but we get an estimation instead. The accuracy of this estimation depends on two factors: 

1. How large 𝑘 is: The larger the k, the more accurate the formula. 

2. How close 𝑥 is to 𝑎: The closer the x is to a, the more accurate the formula. 
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Also note that there is an interaction between 1 and 2: If we choose a larger k, then we can pick any value of x possibly farther from 

the center of expansion (a) and still get an accurate estimation. However, if we only want to use the formula to estimate f(x) for 

some x in the neighborhood of a, then a small value of k suffices. 

The Maclaurin Series expansion is a special case of the Taylor series expansion, where 𝑎 = 0. 

Property 6: 

- Maclaurin series expansion for the exponential function: 

𝑒𝑥𝑝 𝑒𝑥𝑝(𝑥) = ∑

∞

𝑛=0

1

𝑛!
𝑥𝑛 

Property 7: 

- A couple of Maclaurin polynomials for the exponential function: 

●  The 1st-order Maclaurin polynomial: 

  𝑒𝑥𝑝 𝑒𝑥𝑝(𝑥) ≈ 1+ 𝑥. 

●  The 2nd-order Maclaurin polynomial: 

  𝑒𝑥𝑝 𝑒𝑥𝑝(𝑥) ≈ 1+ 𝑥 +
1

2
𝑥2. 

● The 3rd-order Maclaurin polynomial: 

(𝑥) ≈ 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3. 

Now we have all the mathematical tools to prove the relationship specified in the beginning of this topic. Let’s pick the 1st-order 

Maclaurin series for exp and let 𝑥 = 𝜎2, the variance of the ln-transformed PK parameter, then 
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𝑒𝑥𝑝 𝑒𝑥𝑝(𝜎2) ≈ 1+ 𝜎2 

⇒ 𝜎2 ≈𝑒𝑥𝑝 𝑒𝑥𝑝(𝜎2) − 1 

⇒ 𝜎 ≈ √𝑒𝑥𝑝 𝑒𝑥𝑝(𝜎2) − 1 

     ⇒ 𝑆𝐷(𝑙𝑛𝑃𝐾) ≈ 𝐶𝑉(𝑃𝐾) 

SD(lnPK) stands for the standard deviation of the ln-transformed PK parameter. Notice that RMSE of the ln-transformed PK 

parameter is an estimation for SD(lnPK). This proves the observation under discussion! 

One question that might arise at this point is that, with picking the very basic McLaurin polynomial (i.e. the 1-st order polynomial), 

we might not get an accurate estimation. However, the point is that since the variance of the ln-transformed PK parameter is 

typically very small (close to 0), and 0 is nothing but the center of expansion for the McLaurin polynomials, we get a good estimation 

even with the 1st -order polynomial. 

Let us revisit the example provided in the beginning of this topic, 

𝑆𝐷(𝑙𝑛𝐴𝑈𝐶𝑡) = 0.038196          ,   𝐶𝑉(𝐴𝑈𝐶𝑡) = %3.82  (= .0382) 

𝑆𝐷(𝑙𝑛𝐴𝑈𝐶𝑖𝑛𝑓) = 0.039573     ,    𝐶𝑉(𝐴𝑈𝐶𝑖𝑛𝑓) = %3.96  (= .0396) 

𝑆𝐷(𝑙𝑛𝐶𝑚𝑎𝑥) = 0.120978        ,     𝐶𝑉(𝐶𝑚𝑎𝑥) = %12.14  (= .1214) 

Now, we can say why SD(lnPK) and CV(PK) for AUCt and AUCinf perfectly match while for Cmax we don’t have identical values 

(although they are fairly close). The reason is that SD(lnPK) for the first two parameters are closer to 0 (the center of expansion). 

Consequently, the estimations for these parameters are more accurate than that for Cmax. 

We can delineate intervals in terms of accuracy of this estimation as shown below: 

 

1. 𝑆𝐷(𝑙𝑛𝑃𝐾) 𝑖𝑛 (0, .0736]:            𝑆𝐷(𝑙𝑛𝑃𝐾) ≈ 𝐶𝑉(𝑃𝐾) 𝑡𝑜 4 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 
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2. 𝑆𝐷(𝑙𝑛𝑃𝐾) 𝑖𝑛 (.0736, .1220]:   𝑆𝐷(𝑙𝑛𝑃𝐾) ≈ 𝐶𝑉(𝑃𝐾) 𝑡𝑜 3 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠, 

3. 𝑆𝐷(𝑙𝑛𝑃𝐾) 𝑖𝑛 (.1220, .2888]:   𝑆𝐷(𝑙𝑛𝑃𝐾) ≈ 𝐶𝑉(𝑃𝐾) 𝑡𝑜 2 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠, 

4. 𝑆𝐷(𝑙𝑛𝑃𝐾) 𝑖𝑛 (.2888, .5140]:   𝑆𝐷(𝑙𝑛𝑃𝐾) ≈ 𝐶𝑉(𝑃𝐾) 𝑡𝑜 1 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒. 

Please note that decimal places are assumed to be represented after rounding off.  
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