Comforts and Concerns in PK-based Bioequivalence Studies of Inhalation Products.

Noha Rayad and Juan He
BioPharma Services Inc. Toronto, Canada

http://www.biopharmaservices.ca/
https://www.linkedin.com/company/biopharma-services-inc/

PURPOSE
- Generic orally-administered products (OIPs) are warranted as safe, effective and affordable medications.
- Regulatory agencies: far from harmonized: require in vitro, in vivo PK, and/or PD studies to demonstrate bioequivalence (BE)/therapeutic equivalence (TE) to innovator products.
 - FDA → weight-of-evidence approach (PK is one component).
 - EMA → a stepwise approach (PK with charcoal blockade).
 - Health Canada → aggregated evidence (similar to FDA’s).

OBJECTIVE(S)
1. Highlight the prominent PK properties of some OIPs.
2. Evaluate the variability of OIPs in PK/BE clinical trials.
4. Identify the safety profiles (in terms of AEs).
5. Highlight regulatory guidelines for these complex generics.

METHOD(S)
- Drugs studied were fluticasone, salmeterol, budesonide, formoterol, tiotropium bromide and combinations thereof.
- PK-BE studies were conducted on total of 580 NHVs; design/scope shown below.

RESULT(S)
- **Spacer for pMDIs**
 - VHC (AeroChamber plus valved holding chamber) & VS (Vacuum spacer); both:
 - reduced total systemic exposure by 38% and 68%, respectively compared to no reporter (fig 1).
 - showed high inter-subject CV%: yet ISCV% was slightly lower for VS compared to VHC.
 - VHC was superior to VS in terms of:
 - Absorption (46% higher exposure; fig 1).
 - Passing BE criteria.
- **Study Design, PK profiles & BE comparisons**
 - Design: 2-way crossover; replicate design for HVD; and two stage design (for attaining sufficient statistical power).
 - T and R comparison → based on rate (Cmax and Tmax) & extent (AUC) of absorption.
 - Cmax → as early as 6 min with salmeterol, formoterol, budesonide and tiotropium; the Tmax was around 1 h for fluticasone.
- **Charcoal Blockade** resulted in:
 - Formoterol: reduced oral absorption of a proportion of inhaled drug (fig 2 and 3).
 - Budesonide: almost same exposure as without charcoal.
- **Variability**
 - Inter-subject variability for AUC and Cmax (range)
 - 55-65% for fluticasone, salmeterol, budesonide and formoterol.
 - 70-80% for tiotropium DPI.
 - Within-subject variability (S&W) of reference product/Cmax
 - 35% to 60 for fluticasone, salmeterol, budesonide, formoterol, and tiotropium.
 - BE → widened 90% CIs (per replicate design).
- **Safety**
 - AEs → all studied OIPs displayed mild - moderate AEs in severity: well tolerated in NHV.

CONCLUSION(S)
- For demonstrating BE → consistent inhalation technique, lung disposition and PK variability are highly dependent on subjects’ training, formulation & device (for consistent lung delivery).
 - Fully replicate BE design, widened 90% CIs for Cmax
 - Adaptive design, if uncertainty about variability/sample size.
 - Sensitive analytical methods helped in achieving BE.
 - Spacer → reduced total systemic exposure by targeting the medication deeper into the lungs; consistent absorption achieved by VHC spacer.
 - Charcoal blockade → significantly reduced total absorption especially for drugs with inherent high gut bioavailability.

RECOMMENDATIONS
Comforts & concerns - BPSI experience:
- Subjects & staff training and standardized inhalation technique were optimized for lung deposition of drug and reduced variability: such that:
 - MDI, a steady and gentle inhalation: focused on formulation and active agent; sample size and study design (adaptive, replicate and 2-way crossover).
- DPI, rapid, forceful and deep inhalation.
 - High variability: batch-to-batch variability: on formulation and active agent; sample size and study design (adaptive, replicate and 2-way crossover).

REGULATORY ASPECTS
- In Vitro Performance
 - Systemic Exposure
 - PK study
 - Local (Bragg) Delivery
 - PK/Bragg study
 - Formulation & device (for consistent lung delivery).
 - FDA weight-of-evidence Approach
 - EMA Stepwise Approach

- CRO
 - In Vivo
 - In Vivo (PK)
 - In Vivo (PD)
 - Safety
 - BioPharma Services Inc. Toronto, Canada